
Introduction

Essential Introduction to the NAG Fortran Library

This document is essential reading for any prospective user of the Library.

Contents

1 The Library and its Documentation 2
1.1 Structure of the Library . 2
1.2 Structure of the Documentation . 2
1.3 Alternative Forms of Documentation . 2
1.4 Marks of the Library . 3
1.5 Implementations of the Library . 3
1.6 Precision of the Library . 3
1.7 Library Identification . 3
1.8 Fortran Language Standards . 4

2 Using the Library 4
2.1 General Advice . 4
2.2 Programming Advice . 4
2.3 Error Handling and the Parameter IFAIL . 5
2.4 Input/output in the Library . 5
2.5 Auxiliary Routines . 6
2.6 Thread Safety . 6
2.7 Calling the Library from Other Languages . 6

3 Using the Documentation 6
3.1 Using the Manual . 6
3.2 Structure of Routine Documents . 7
3.3 Specification of Parameters . 7

3.3.1 Classification of parameters . 7
3.3.2 Constraints and suggested values . 8
3.3.3 Array parameters . 8

3.4 Implementation-dependent Information . 9
3.5 Example Programs and Results . 10
3.6 Summary for New Users . 10
3.7 Pre-Mark 14 Routine Documents . 11

4 Support from NAG 11

5 Background to NAG 12

6 References 12

[NP3390/19/pdf] ESSINT.1

Essential Introduction Introduction

1 The Library and its Documentation
1.1 Structure of the Library

The NAG Fortran Library is a comprehensive collection of Fortran routines for the solution of numerical
and statistical problems. The word ‘routine’ is used to denote ‘subroutine’ or ‘function’.

The Library is divided into chapters, each devoted to a branch of numerical analysis or statistics. Each
chapter has a three-character name and a title, e.g.,

D01 – Quadrature

Exceptionally, two chapters (Chapter H and Chapter S) have one-character names. (The chapters and
their names are based on the ACM modified SHARE classification index [1].)

All documented routines in the Library have six-character names, beginning with the characters of the
chapter name, e.g.,

D01AJF

Note that the second and third characters are digits, not letters; e.g., 0 is the digit zero, not the letter
O. The last letter of each routine name always appears as ‘F’ in the documentation, but may be changed
to ‘E’ in some single precision implementations (see Section 1.6).

Chapter F06 (Linear Algebra Support Routines) contains all the Basic Linear Algebra Subprograms,
BLAS, with NAG-style names as well as with the actual BLAS names, e.g., F06AAF (SROTG/DROTG).
The names in brackets are the equivalent single and double precision BLAS names respectively.
Chapter F07 (Linear Equations (LAPACK)) and Chapter F08 (Least-squares and Eigenvalue Problems
(LAPACK)) contain routines derived from the LAPACK project. Like the BLAS, these routines have
NAG-style names as well as LAPACK names, e.g., F07ADF (SGETRF/DGETRF). Details regarding
these alternate names can be found in the relevant Chapter Introductions.

In order to take full advantage of machine-specific versions of BLAS and LAPACK routines provided
by some computer hardware vendors, you are encouraged to use the BLAS and LAPACK names
(e.g., SROTG/DROTG and SGETRF/DGETRF) rather than the corresponding NAG-style names (e.g.,
F06AAF and F07ADF) wherever possible in your programs.

1.2 Structure of the Documentation

The NAG Fortran Library Manual is the principal printed form of documentation for the NAG Fortran
Library. It has the same chapter structure as the Library: each chapter of routines in the Library has
a corresponding chapter (of the same name) in the Manual. The chapters occur in alphanumeric order.
General introductory documents and indexes are placed in Volume 1 of the Manual.

Each chapter consists of the following documents:

Chapter Contents, e.g., Contents – D01;

Chapter Introduction, e.g., Introduction – D01;

Routine Documents, one for each documented routine in the chapter.

A routine document has the same name as the routine which it describes. Within each chapter, routine
documents occur in alphanumeric order. Exceptionally, some chapters (Chapter F06, Chapter X01,
Chapter X02) do not have individual routine documents; instead, all the routines are described together
in the Chapter Introduction. Another exception is Chapter A00, which contains neither a Chapter
Introduction nor any routine documents. It does however contain a user-callable support routine that
identifies which version of the Library is available at your site (see Section 1.7).

In addition to the full printed Manual, NAG produces a printed Introductory Guide, which contains
all the introductory material from the Manual, together with all the Chapter Contents and Chapter
Introductions.

1.3 Alternative Forms of Documentation

NAG also provides machine-based documentation. The ability to display mathematics and symbols has
now reached a stage whereby it is possible to produce a satisfactory full HTML version of the Library

ESSINT.2 [NP3390/19/pdf]

Introduction Essential Introduction

documentation that will provide ready access to users via standardWeb browsers. This HTML version will
replace the current hypertext version (TextWare), but will retain many of the features of that product.
The aim is to have an HTML version of Mark 19 of the Fortran Library documentation available for
distribution with the Library software. It will also be accessible via the NAG Web site. Future releases
may take advantage of technology that is currently being developed (e.g., MathML).

1.4 Marks of the Library

Periodically a new Mark of the NAG Fortran Library is released: new routines are added, corrections
or improvements are made to existing routines; occasionally routines are withdrawn if they have been
superseded by improved routines.

At each Mark, the documentation of the Library is updated. You must make sure that your documentation
has been updated to the same Mark as the Library software that you are using.

Marks are numbered, e.g., 16, 17, 18. The current Mark is 19.

The Library software may be updated between Marks to an intermediate maintenance level, in order to
incorporate corrections. Maintenance levels are indicated by a letter following the Mark number, e.g.,
19A, 19B, and so on (Mark 19 documentation supports all these maintenance levels).

1.5 Implementations of the Library

The NAG Fortran Library is available on many different computer systems. For each distinct system,
an implementation of the Library is prepared by NAG, e.g., the Cray C-90 Unicos implementation. The
implementation is distributed to sites as a tested compiled library.

An implementation is usually specific to a range of machines (e.g., the DEC VAX range); it may also
be specific to a particular operating system, Fortran compiler, or compiler option (e.g., scalar or vector
mode).

Essentially the same facilities are provided in all implementations of the Library, but, because of
differences in arithmetic behaviour and in the compilation system, routines cannot be expected to give
identical results on different systems, especially for sensitive numerical problems.

The documentation supports all implementations of the Library, with the help of a few simple conventions,
and a small amount of implementation-dependent information, which is published in a separate Users’
Note for each implementation (see Section 3.4).

1.6 Precision of the Library

The NAG Fortran Library is developed in both single precision and double precision versions. REAL
variables and arrays in the single precision version are replaced by DOUBLE PRECISION variables and
arrays in the double precision version.

On most systems only one precision of the Library is available; the precision chosen is that which is
considered most suitable in general for numerical computation (double precision on most systems).

On some systems both precisions are provided: in this case, the double precision routines have names
ending in ‘F’ (as in the documentation), and the single precision routines have names ending in ‘E’. Thus
in DEC VAX/VMS implementations:

D01AJF is a routine in the double precision implementation;

D01AJE is the corresponding routine in the single precision implementation.

Whatever the precision, INTEGER variables (and elements of arrays) always occupy one numeric storage
unit, that is the Library is not implemented using non-standard [7] integer storage, e.g., INTEGER*2.

1.7 Library Identification

You must know which implementation, which precision and which Mark of the Library you are using or
intend to use. To find out which implementation, precision and Mark of the Library is available at your
site, you can run a program which calls the NAG Library routine A00AAF (or A00AAE in most single
precision implementations). This routine has no parameters; it simply outputs text to the NAG Library
advisory message unit (see Section 2.4). An example of the output is:

[NP3390/19/pdf] ESSINT.3

Essential Introduction Introduction

*** Start of NAG Library implementation details ***
Implementation title: Sun(SPARC) Solaris

Precision: double
Product Code: FLSOL19D

Mark: 19
*** End of NAG Library implementation details ***

(The product code can be ignored, except possibly when communicating with NAG; see Section 4.)

1.8 Fortran Language Standards

All routines in the Library conform to the ISO Fortran 90 Standard [8], except for the use of a double
precision complex data type (usually COMPLEX*16) in some routines in Fortran 77 compiled double
precision implementations of the Library – there is no provision for this data type in the old ANSI
Standard Fortran 77 [7].

Many of the routines in the Library were originally written to conform to the earlier Fortran 66 standard
[6], and their calling sequences may contain a few parameters which are not strictly necessary in
Fortran 77.

2 Using the Library
2.1 General Advice

A NAG Fortran Library routine cannot be guaranteed to return meaningful results irrespective of the
data supplied to it. Care and thought must be exercised in:

(a) formulating the problem;
(b) programming the use of library routines;
(c) assessing the significance of the results.

The Foreword to the Manual provides some further discussion of points (a) and (c); the remainder of
Section 2 is concerned with (b).

2.2 Programming Advice

The NAG Fortran Library and its documentation are designed on the assumption that you know how to
write a calling program in Fortran.

When programming a call to a routine, read the routine document carefully, especially the description
of the Parameters. This states clearly which parameters must have values assigned to them on entry to
the routine, and which return useful values on exit. See Section 3.3 for further guidance.

The most common types of programming error in using the Library are:

– incorrect parameters in a call to a Library routine;
– calling a double precision implementation of the Library from a single precision program, or vice

versa.

Therefore if a call to a Library routine results in an unexpected error message from the system (or possibly
from within the Library), check the following:

Has the NAG routine been called with the correct number of parameters?

Do the parameters all have the correct type?

Have all array parameters been dimensioned correctly?

Is your program in the same precision as the NAG Library routines to which your program is being
linked?

Have NAG routine names been modified – if necessary – as described in Section 1.6 and Section
2.5?

Avoid the use of NAG-type names for your own program units or COMMON blocks: in general, do not
use names which contain a three-character NAG chapter name embedded in them; they may clash with
the names of an auxiliary routine or COMMON block used by the NAG Library.

ESSINT.4 [NP3390/19/pdf]

Introduction Essential Introduction

2.3 Error Handling and the Parameter IFAIL

NAG Fortran Library routines may detect various kinds of error, failure or warning conditions. Such
conditions are handled in a systematic way by the Library. They fall roughly into three classes:

(i) an invalid value of a parameter on entry to a routine;
(ii) a numerical failure during computation (e.g., approximate singularity of a matrix, failure of an

iteration to converge);
(iii) a warning that although the computation has been completed, the results cannot be guaranteed to

be completely reliable.

All three classes are handled in the same way by the Library, and are all referred to here simply as ‘errors’.

The error-handling mechanism uses the parameter IFAIL, which occurs as the last parameter in the
calling sequence of most NAG Library routines. IFAIL serves two purposes:

(i) it allows users to specify what action a Library routine should take if it detects an error;
(ii) it reports the outcome of a call to a Library routine, either ‘success’ (IFAIL = 0) or ‘failure’ (IFAIL

�= 0, with different values indicating different reasons for the failure, as explained in Section 6 of
the routine document).

For the first purpose IFAIL must be assigned a value before calling the routine; since IFAIL is reset by
the routine, it must be passed as a variable, not as an integer constant. Allowed values on entry are:

IFAIL = 0: an error message is output, and execution is terminated (‘hard failure’);
IFAIL = +1: execution continues without any error message;
IFAIL = −1: an error message is output, and execution continues.

The settings IFAIL = ±1 are referred to as ‘soft failure’.

The safest choice is to set IFAIL to 0, but this is not always convenient: some routines return useful
results even though a failure (in some cases merely a warning) is indicated. However, if IFAIL is set to ±1
on entry, it is essential for the program to test its value on exit from the routine, and to take appropriate
action.

The specification of IFAIL in Section 5 of a routine document suggests a suitable setting of IFAIL for
that routine.

For a full description of the error-handling mechanism, see Chapter P01.

Routines in Chapter F07 and Chapter F08 do not use the usual error handling mechanism; in order to
preserve complete compatibility with LAPACK software, they have a diagnostic output parameter INFO
which need not be set before entry. See the F07 Chapter Introduction or the F08 Chapter Introduction
for further details.

Some routines in Chapter F06 output an error message if an illegal input parameter is detected, then
terminate program execution immediately. See the F06 Chapter Introduction for further details.

2.4 Input/output in the Library

Most NAG Library routines perform no output to an external file, except possibly to output an error
message. All error messages are written to a logical error message unit. This unit number (which is set
by default to 6 in most implementations) can be changed by calling the Library routine X04AAF.

Some NAG Library routines may optionally output their final results, or intermediate results to monitor
the course of computation. In general, output other than error messages is written to a logical advisory
message unit. This unit number (which is also set by default to 6 in most implementations) can be
changed by calling the Library routine X04ABF. Although it is logically distinct from the error message
unit, in practice the two unit numbers may be the same. A few routines in Chapter E04 allow this unit
number to be specified directly as an option.

All output from the Library is formatted.

There are only a few Library routines which perform input from an external file. These examples occur
in Chapter E04 and Chapter H. The unit number of the external file is a parameter to the routine, and
all input is formatted.

You must ensure that the relevant Fortran unit numbers are associated with the desired external files,
either by an OPEN statement in your calling program, or by operating system commands.

[NP3390/19/pdf] ESSINT.5

Essential Introduction Introduction

2.5 Auxiliary Routines

In addition to those Library routines which are documented and are intended to be called by users,
the Library also contains many auxiliary routines. Details of all the auxiliary routines which are called
directly or indirectly by any documented NAG Library routine are supplied to sites in machine-readable
form with the Library software.

In general, you need not be concerned with them at all, although you may be made aware of their existence
if, for example, you examine a memory map of an executable program which calls NAG routines. The
only exception is that when calling some NAG Library routines you may be required or allowed to supply
the name of an auxiliary routine from the NAG Library as an external procedure parameter. The routine
documents give the necessary details. In such cases, you only need to supply the name of the routine;
you never need to know details of its parameter list.

NAG auxiliary routines have names which are similar to the name of the documented routine(s) to which
they are related, but with last letter ‘Z’, ‘Y’, and so on, e.g.,

D01BAZ is an auxiliary routine called by D01BAF.

In a single precision implementation in which the names of documented routines end in ‘E’, the names
of auxiliary routines have their first three and last three characters interchanged, e.g.,

BAZD01 is an auxiliary routine (corresponding to D01BAZ) called by D01BAE.

2.6 Thread Safety

Some implementations of the Library facilitate the use of threads; that is, you can call routines from
the Library from within a multi-threaded application. You should note however that Mark 19 is not
fully thread safe. See the document ‘Thread Safety’ for more detailed guidance on using the Library
in a multi-threaded context. You may also need to refer to the Users’ Note for details of whether your
implementation of the Library has been compiled in a manner that facilitates the use of threads.

2.7 Calling the Library from Other Languages

In general the NAG Fortran Library can be called from other computer languages (such as C and Visual
Basic) provided that appropriate mappings exist between their data types.

As part of its Library service, NAG provides a C Header Files service which comprises a set of header
files indicating the match between C and Fortran data types for various compilers, documentation and
examples. The documentation and examples are available from the NAG Web site.

The Dynamic Link Library (DLL) version can be called in a straightforward manner from Visual Basic.
Guidance on this is provided as part of the NAG Fortran Library DLLs. Further details can be found on
the NAG Web site.

3 Using the Documentation
3.1 Using the Manual

The Manual is designed to serve the following functions:

– to give background information about different areas of numerical and statistical computation;
– to advise on the choice of the most suitable NAG Library routine or routines to solve a particular

problem;
– to give all the information needed to call a NAG Library routine correctly from a Fortran

program, and to assess the results.

At the beginning of the Manual are some general introductory documents. The following may help you
to find the chapter, and possibly the routine, which you need to solve your problem:

Library Contents – a structured list of routines in the Library, by chapter;
KWIC Index – a keyword index to chapters and routines;
GAMS Index – a list of NAG routines classified according to the GAMS scheme.

ESSINT.6 [NP3390/19/pdf]

Introduction Essential Introduction

Having found a likely chapter or routine, you should read the corresponding Chapter Introduction, which
gives background information about that area of numerical computation, and recommendations on the
choice of a routine, including indexes, tables or decision trees.

When you have chosen a routine, you must consult the routine document. Each routine document is
essentially self-contained (it may contain references to related documents). It includes a description of the
method, detailed specifications of each parameter, explanations of each error exit, remarks on accuracy,
and (in most cases) an example program to illustrate the use of the routine.

3.2 Structure of Routine Documents

Note that at Mark 17 a new typesetting scheme was used to generate documentation. If you have a
Manual which contains pre-Mark 17 routine documents, you will find that it contains older documents
which differ in appearance, although the structure is the same.

Note also that at Mark 14 some changes were made to the style and appearance of routine documents.
If you have a Manual which contains pre-Mark 14 routine documents, you will find that it contains
older documents which differ in style, although they contain essentially the same information. Section
3.2, Section 3.3 and Section 3.5 of this Essential Introduction describe the new-style routine documents.
Section 3.7 gives some details about the old-style documents.

All routine documents have the same structure, consisting of nine numbered sections:

1. Purpose
2. Specification
3. Description
4. References
5. Parameters (see Section 3.3 below)
6. Error Indicators and Warnings
7. Accuracy
8. Further Comments
9. Example (see Section 3.5 below)

In a few documents there are a further three sections:

10. Algorithmic Details
11. Optional Parameters
12. Description of Monitoring Information

3.3 Specification of Parameters

Section 5 of each routine document contains the specification of the parameters, in the order of their
appearance in the parameter list.

3.3.1 Classification of parameters

Parameters are classified as follows.

Input: you must assign values to these parameters on or before entry to the routine, and these values are
unchanged on exit from the routine.

Output: you need not assign values to these parameters on or before entry to the routine; the routine
may assign values to them.

Input/Output: you must assign values to these parameters on or before entry to the routine, and the
routine may then change these values.

Workspace: array parameters which are used as workspace by the routine. You must supply arrays of
the correct type and dimension. In general, you need not be concerned with their contents.

External Procedure: a subroutine or function which must be supplied (e.g., to evaluate an integrand or
to print intermediate output). Usually it must be supplied as part of your calling program, in which case
its specification includes full details of its parameter list and specifications of its parameters (all enclosed
in a box). Its parameters are classified in the same way as those of the Library routine, but because you
must write the procedure rather than call it, the significance of the classification is different.

[NP3390/19/pdf] ESSINT.7

Essential Introduction Introduction

Input: values may be supplied on entry, which your procedure must not change.

Output: you may or must assign values to these parameters before exit from your procedure.

Input/Output: values may be supplied on entry, and you may or must assign values to them before
exit from your procedure.

Occasionally, as mentioned in Section 2.5, the procedure can be supplied from the NAG Library, and
then you only need to know its name.

User Workspace: array parameters which are passed by the Library routine to an external procedure
parameter. They are not used by the routine, but you may use them to pass information between your
calling program and the external procedure.

Dummy: a simple variable which is not used by the routine. A variable or constant of the correct type
must be supplied, but its value need not be set. (A dummy parameter is usually a parameter which was
required by an earlier version of the routine and is retained in the parameter list for compatibility.)

3.3.2 Constraints and suggested values

The word ‘Constraint:’ or ‘Constraints:’ in the specification of an Input parameter introduces a statement
of the range of valid values for that parameter, e.g.,

Constraint: N > 0.

If the routine is called with an invalid value for the parameter (e.g., N = 0), the routine will usually take
an error exit, returning a non-zero value of IFAIL (see Section 2.3).

In newer routine documents, constraints on parameters of type CHARACTER only list upper case
alphabetic characters, e.g.,

Constraint: STRING = ’A’ or ’B’.

In practice, all routines with CHARACTER parameters will permit the use of lower case characters.

The phrase ‘Suggested Value:’ introduces a suggestion for a reasonable initial setting for an Input
parameter (e.g., accuracy or maximum number of iterations) in case you are unsure what value to use;
you should be prepared to use a different setting if the suggested value turns out to be unsuitable for
your problem.

3.3.3 Array parameters

Most array parameters have dimensions which depend on the size of the problem. In Fortran terminology
they have ‘adjustable dimensions’: the dimensions occurring in their declarations are integer variables
which are also parameters of the Library routine.

For example, a Library routine might have the specification:

SUBROUTINE <name> (M, N, A, B, LDB)
INTEGER M, N, A(N), B(LDB,N), LDB

For a one-dimensional array parameter, such as A in this example, the specification would begin:

A(N) — INTEGER array

You must ensure that the dimension of the array, as declared in your calling (sub)program, is at least as
large as the value you supply for N. It may be larger, but the routine uses only the first N elements.

For a two-dimensional array parameter, such as B in the example, the specification might be:

B(LDB,N) — INTEGER array

On entry: the m by n matrix B.

and the parameter LDB might be described as follows:

LDB — INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which <name>
is called.

Constraint: LDB ≥ M.

ESSINT.8 [NP3390/19/pdf]

Introduction Essential Introduction

You must supply the first dimension of the array B, as declared in your calling (sub)program, through
the parameter LDB, even though the number of rows actually used by the routine is determined by the
parameter M. You must ensure that the first dimension of the array is at least as large as the value you
supply for M. The extra parameter LDB is needed because Fortran does not allow information about the
dimensions of array parameters to be passed automatically to a routine.

You must also ensure that the second dimension of the array, as declared in your calling (sub)program,
is at least as large as the value you supply for N. It may be larger, but the routine uses only the first N
columns.

A program to call the hypothetical routine used as an example in this section might include the statements:

INTEGER AA(100), BB(100,50)
LDB = 100
.
.
.
M = 80
N = 20
CALL <name>(M,N,AA,BB,LDB)

Fortran requires that the dimensions which occur in array declarations must be greater than zero. Many
NAG routines are designed so that they can be called with a parameter like N in the above example set
to 0 (in which case they would usually exit immediately without doing anything). If so, the declarations
in the Library routine would use the ‘assumed size’ array dimension, and would be given as:

INTEGER M, N, A(*), B(LDB,*), LDB

However, the original declaration of an array in your calling program must always have constant
dimensions, greater than or equal to 1.

Consult an expert or a textbook on Fortran if you have difficulty in calling NAG routines with array
parameters.

3.4 Implementation-dependent Information

In order to support all implementations of the Library, the Manual has adopted a convention of using
bold italics to distinguish terms which have different interpretations in different implementations.

The most important bold italicised terms are the following; their interpretation depends on whether the
implementation is in single precision or double precision.

real means REAL or DOUBLE PRECISION
complex means COMPLEX or COMPLEX*16 (or equivalent)
basic precision means single precision or double precision
additional precision means double precision or quadruple precision

Another important bold italicised term is machine precision, which denotes the relative precision
to which real floating-point numbers are stored in the computer, e.g., in an implementation with
approximately 16 decimal digits of precision, machine precision has a value of approximately 10−16.

The precise value of machine precision is given by the function X02AJF. Other functions in Chapter
X02 return the values of other implementation-dependent constants, such as the overflow threshold, or
the largest representable integer. Refer to the X02 Chapter Introduction for more details.

The bold italicised term blocksize is used only in Chapter F07 and Chapter F08. It denotes the block
size used by block algorithms in these chapters. You only need to be aware of its value when it affects the
amount of workspace to be supplied – see the parameters WORK and LWORK of the relevant routine
documents and the Chapter Introduction.

For each implementation of the Library, a separate Users’ Note is published. This is a short document,
revised at each Mark. At most installations it is available in machine-readable form. It gives any necessary
additional information which applies specifically to that implementation, in particular:

[NP3390/19/pdf] ESSINT.9

Essential Introduction Introduction

– the interpretation of bold italicised terms;

– the values returned by X02 routines;

– the default unit numbers for output (see Section 2.4);

– details of name changes for Library routines (see Section 1.6 and Section 2.5).

In Chapter F06, Chapter F07 and Chapter F08 where alternate routine names are available for BLAS
and LAPACK derived routines the alternate name appears in bold italics – for example, sgetrf, which
should be interpreted as either SGETRF (in single precision) or DGETRF (in double precision) in the
case of F07ADF, which handles real matrices. Similarly, F07ARF for complex matrices uses cgetrf,
which should be interpreted as either CGETRF (in single precision) or ZGETRF (in double precision).

3.5 Example Programs and Results

The example program in Section 9 of each routine document illustrates a simple call of the routine. The
programs are designed so that they can fairly easily be modified, and so serve as the basis for a simple
program to solve your problem.

Bold italicised terms are used in the printed text of the example program to denote precision-dependent
features in the code. The correct Fortran code must therefore be substituted before the program can be
run. In addition to the terms real and complex, which were explained in Section 3.4, the following
terms are used in the example programs:

Intrinsic Functions: real means REAL or DBLE (see Note below)
imag means AIMAG or DIMAG
cmplx means CMPLX or DCMPLX
conjg means CONJG or DCONJG

Edit Descriptor: e means E or D (in FORMAT statements)
Exponent Letter: e means E or D (in constants)

Note that in some implementations the intrinsic function real with a complex argument must be
interpreted as DREAL rather than DBLE.

The examples in Chapter F07 and Chapter F08 use the precision-dependent LAPACK routine names, as
mentioned in Section 3.4.

For each implementation of the Library, NAG distributes the example programs in machine-readable
form, with all necessary modifications already applied. Many sites make the programs accessible to you
in this form. They may also be obtained directly from the NAG Web site.

Note that the results from running the example programs may not be identical in all implementations,
and may not agree exactly with the results which are printed in the Manual and which were obtained
from a double precision implementation (with approximately 16 digits of precision).

The Users’ Note for your implementation will mention any special changes which need to be made to the
example programs, and any significant differences in the results.

3.6 Summary for New Users

If you are unfamiliar with the NAG Library and are thinking of using a routine from it, please follow
these instructions:

(a) read the whole of the Essential Introduction;
(b) consult the Library Contents to choose an appropriate chapter or routine;
(c) or search through the KWIC Index, GAMS Index or via an online search facility;
(d) read the relevant Chapter Introduction;
(e) choose a routine, and read the routine document. If the routine does not after all meet your needs,

return to steps (b) or (c);
(f) read the Users’ Note for your implementation;
(g) consult local documentation, which should be provided by your local support staff, about access to

the NAG Library on your computing system.

ESSINT.10 [NP3390/19/pdf]

Introduction Essential Introduction

You should now be in a position to include a call to the routine in a program, and to attempt to compile
and run it. You may of course need to refer back to the relevant documentation in the case of difficulties,
for advice on assessment of results, and so on.

As you become familiar with the Library, some of steps (a) to (f) can be omitted, but it is always essential
to:

– be familiar with the Chapter Introduction;
– read the routine document;
– be aware of the Users’ Note for your implementation.

3.7 Pre-Mark 14 Routine Documents

You need only read this section if you have an updated Manual which contains pre-Mark 14 documents.

You will find that older routine documents appear in a somewhat different style, or even several styles if
your Manual dates back to Mark 7, say. The following are the most important differences between the
earlier styles and the new style introduced at Mark 14:

– before Mark 12, routine documents had 13 sections: the extra sections have either been dropped
or merged with the present Section 8 (Further Comments);

– in Section 5, parameters were not classified as Input, Output and so on; the phrase ‘Unchanged
on exit’ was used to indicate an input parameter;

– the example programs were revised at Mark 12 and again at Mark 14, to take advantage of
features of Fortran 77: the programs printed in older documents do not correspond exactly with
those which are now distributed to sites in machine-readable form or available on the NAG Web
site;

– before Mark 12, the printed example programs did not use bold italicised terms; they were
written in standard single precision Fortran;

– before Mark 9, the printed example results were generated on an ICL 1906A (with approximately
11 digits of precision), and between Marks 9 and 12 they were generated on an ICL 2900 (with
approximately 16 digits of precision);

– before Mark 13, documents referred to ‘the appropriate implementation document’; this means
the same as ‘the Users’ Note for your implementation’.

4 Support from NAG

NAG places considerable emphasis on providing high quality user support. In addition to comprehensive
documentation we offer a variety of services to support our users.

(a) NAG Response Centres

The Response Centres are available to answer technical queries from sites with an annually licensed
product or Support Service.

The Response Centres are open during office hours, but contact is possible by fax, email and
telephone (answering machine) at all times. You can find the contact details for your local Response
Centre in the Support Documentation supplied with this product.

However, general queries concerning this library should be directed initially to any local advisory
service your site may provide.

(b) NAG Web Sites

The NAG web sites provide a valuable resource for product information, technical documentation
and demonstrations, as well as articles of more general interest. The sites can be accessed at:

www.nag.co.uk or www.nag.com

(c) Training Courses

NAG organises workshops and training courses at various locations throughout the world.
Information about forthcoming courses is posted on the NAG web sites. If you have a particular
training requirement please contact us.

As well as offering these services to users, NAG values feedback to ensure that we continue to
develop products that meet your needs. We welcome your comments.

[NP3390/19/pdf] ESSINT.11

Essential Introduction Introduction

5 Background to NAG

Various aspects of the design and development of the NAG Library, and NAG’s technical policies and
organisation are given in references [2], [3], [4], and [5].

6 References

[1] (1960–1976) Collected algorithms from ACM index by subject to algorithms

[2] Ford B (1982) Transportable numerical software Lecture Notes in Computer Science 142 Springer-
Verlag 128–140

[3] Ford B, Bentley J, Du Croz J J and Hague S J (1979) The NAG Library ‘machine’ Softw. Pract.
Exper. 9(1) 65–72

[4] Ford B and Pool J C T (1984) The evolving NAG Library service Sources and Development of
Mathematical Software (ed W Cowell) Prentice–Hall 375–397

[5] Hague S J, Nugent S M and Ford B (1982) Computer-based documentation for the NAG Library
Lecture Notes in Computer Science 142 Springer-Verlag 91–127

[6] (1966) USA standard Fortran Publication X3.9 American National Standards Institute

[7] (1978) American National Standard Fortran Publication X3.9 American National Standards
Institute

[8] ISO Fortran 90 programming language (ISO 1539:1991)

ESSINT.12 (last) [NP3390/19/pdf]

